Tutorial 7

Exercise 1. Use the simplex method to solve the two-person zero-sum game with game matrix

$$\begin{pmatrix} 3 & 1 & -2 \\ 2 & 3 & -1 \\ -1 & -2 & 2 \end{pmatrix}.$$

Solution. Step 1. Add 2 to each entry, we get

$$\begin{pmatrix}
5 & 3 & 0 \\
4 & 5 & 1 \\
1 & 0 & 4
\end{pmatrix}.$$

Step 2. Set up the tableau as

Step 3. Apply pivoting operations, we have

	y_1	y_2	y_3		_		y_1	y_2	x_3		_
x_1	5	3	0	1		x_1	5	3	0	1	
x_2	4	5	1	1	\rightarrow	x_2	$\frac{15}{4}$	5 *	$-\frac{1}{4}$	$\frac{3}{4}$	\rightarrow
x_3	1	0	4 *	1		y_3	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	
	1	1	1	0	-		$\frac{3}{4}$	1	$-\frac{1}{4}$	$-\frac{1}{4}$	-

Let $d = \frac{2}{5}$. Then the value of the game is $v = \frac{1}{d} - 2 = \frac{1}{2}$. Since the basic solution is

$$x_3 = \frac{1}{5}$$

$$x_1 = 0$$

$$y_3 = \frac{1}{4}$$

$$y_2 = \frac{3}{20}$$

$$x_2 = \frac{1}{5}$$

$$y_1 = 0$$

We have the maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3) = \frac{5}{2}(0, \frac{1}{5}, \frac{1}{5}) = (0, \frac{1}{2}, \frac{1}{2}),$$

and the minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = \frac{5}{2}(0, \frac{3}{20}, \frac{1}{4}) = (0, \frac{3}{8}, \frac{5}{8}).$$

Exercise 2. Let A be an $m \times n$ matrix. Let

$$C = \operatorname{conv}(\{a_1, \dots, a_n, e_1, \dots, e_m\})$$

be the convex hull of set $\{a_1, \dots, a_n, e_1, \dots, e_m\}$, where a_1^T, \dots, a_n^T are the column vectors of A and e_1, \dots, e_m are the vectors in the standard basis of \mathbb{R}^m . Prove if C contains a point $(c, \dots, c) \in \mathbb{R}^m$ with $c \leq 0$, then the value of A, $v(A) \leq c$.

Proof. Since $(c, \dots, c) \in C$, there exist $\lambda_1, \dots, \lambda_{n+m}$ such that

$$\lambda_1 \mathbf{a}_1 + \dots + \lambda_n \mathbf{a}_n + \lambda_{n+1} \mathbf{e}_1 + \dots + \lambda_{n+m} \mathbf{e}_m = (c, \dots, c),$$

where $0 \le \lambda_i \le 1$ and $\lambda_1 + \cdots + \lambda_{n+m} = 1$.

Since $c \leq 0$, at least one of $\lambda_1, \dots, \lambda_n$ is positive. Multiply both sides of the above equation by $\frac{1}{\lambda_1 + \dots + \lambda_n}$, we have

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_n} \boldsymbol{a}_1 + \dots + \frac{\lambda_n}{\lambda_1 + \dots + \lambda_n} \boldsymbol{a}_n = (\frac{c - \lambda_{n+1}}{\lambda_1 + \dots + \lambda_n}, \dots, \frac{c - \lambda_{n+m}}{\lambda_1 + \dots + \lambda_n}).$$

Taking transpose, we have

$$(\boldsymbol{a}_1^T \cdots \boldsymbol{a}_n^T) \begin{pmatrix} \frac{\lambda_1}{\lambda_1 + \cdots + \lambda_n} \\ \vdots \\ \frac{\lambda_n}{\lambda_1 + \cdots + \lambda_n} \end{pmatrix} = \frac{1}{\lambda_1 + \cdots + \lambda_n} \begin{pmatrix} c - \lambda_{n+1} \\ \cdots \\ c - \lambda_{n+m} \end{pmatrix}.$$

Note that $A = (\boldsymbol{a}_1^T, \dots, \boldsymbol{a}_n^T)$. Write $\boldsymbol{q} = \frac{1}{\lambda_1 + \dots + \lambda_n} (\lambda_1, \dots, \lambda_n)$. Then $\boldsymbol{q} \in \mathcal{P}^n$ and

$$\boldsymbol{x} A \boldsymbol{q}^T \le \max_{1 \le i \le m} \frac{c - \lambda_{n+i}}{\lambda_1 + \dots + \lambda_n} \le c$$
, since $c \le 0$.

Hence

$$v(A) = \min_{\boldsymbol{y} \in \mathcal{P}^n} \max_{\boldsymbol{x} \in \mathcal{P}^m} \boldsymbol{x} A \boldsymbol{y}^T \le \max_{\boldsymbol{x} \in \mathcal{P}^m} \boldsymbol{x} A \boldsymbol{q}^T \le c.$$